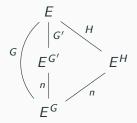
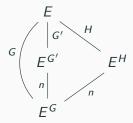
### **Hopf-Galois Structures on Parallel Extensions**

Andrew Darlington

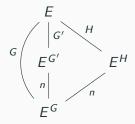
Thursday 1st June 2023



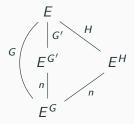




• G' is a core-free index n subgroup of G.



- G' is a core-free index n subgroup of G.
- There may be other index *n* subgroups *H* of *G*.



- G' is a core-free index n subgroup of G.
- There may be other index *n* subgroups *H* of *G*.
- We say L'/K is a *parallel* extension of L/K.

#### Question...

## If L/K admits a Hopf-Galois structure of type N, what can we say about L'/K?

Let  $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt[4]{2})$ . Then L/K has Galois closure  $E = \mathbb{Q}(\sqrt[4]{2}, i)$ .

Let  $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt[4]{2})$ . Then L/K has Galois closure  $E = \mathbb{Q}(\sqrt[4]{2}, i)$ .

•  $\operatorname{Gal}(E/K)$  is generated by  $\sigma, \tau$  such that

$$\begin{aligned} \sigma(\sqrt[4]{2}) &= -i\sqrt[4]{2}, & \sigma(i) = i, \\ \tau(\sqrt[4]{2}) &= \sqrt[4]{2}, & \tau(i) = -i \end{aligned}$$

so  $\langle \sigma, \tau \rangle \cong D_8$ .

Let  $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt[4]{2})$ . Then L/K has Galois closure  $E = \mathbb{Q}(\sqrt[4]{2}, i)$ .

• Gal(E/K) is generated by  $\sigma, \tau$  such that

$$\begin{aligned} \sigma(\sqrt[4]{2}) &= -i\sqrt[4]{2}, & \sigma(i) = i, \\ \tau(\sqrt[4]{2}) &= \sqrt[4]{2}, & \tau(i) = -i \end{aligned}$$

so  $\langle \sigma, \tau \rangle \cong D_8$ .

•  $L = E^{G'}$  where  $G' = \langle \tau \rangle$  is index 4 in G and has trivial core.

Let  $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt[4]{2})$ . Then L/K has Galois closure  $E = \mathbb{Q}(\sqrt[4]{2}, i)$ .

• Gal(E/K) is generated by  $\sigma, \tau$  such that

$$\begin{aligned} \sigma(\sqrt[4]{2}) &= -i\sqrt[4]{2}, & \sigma(i) = i, \\ \tau(\sqrt[4]{2}) &= \sqrt[4]{2}, & \tau(i) = -i \end{aligned}$$

so  $\langle \sigma, \tau \rangle \cong D_8$ .

- $L = E^{G'}$  where  $G' = \langle \tau \rangle$  is index 4 in G and has trivial core.
- H := ⟨σ<sup>2</sup>⟩ is a normal subgroup in G, so E<sup>H</sup> = Q(√2, i)/Q is Galois with group C<sub>2</sub> × C<sub>2</sub> (smaller Galois closure, so possibly different HGS).

L/K separable, E, G, G' as usual. Let  $H := gG'g^{-1}$  for some  $g \in G$  with  $L' := E^H$ . Then  $L \cong L'$  as field extensions, so

L/K separable, E, G, G' as usual. Let  $H := gG'g^{-1}$  for some  $g \in G$  with  $L' := E^H$ . Then  $L \cong L'$  as field extensions, so

L/K has a HGS of type N

#### $\iff$

L'/K has a HGS of type N.

L/K separable, E, G, G' as usual. Let  $H := gG'g^{-1}$  for some  $g \in G$  with  $L' := E^H$ . Then  $L \cong L'$  as field extensions, so

L/K has a HGS of type N

L'/K has a HGS of type N.

We saw an example where  $G' \cong H$  as abstract groups, but  $L \not\cong L'$  as field extensions.

L/K separable, E, G, G' as usual. Let  $H := gG'g^{-1}$  for some  $g \in G$  with  $L' := E^H$ . Then  $L \cong L'$  as field extensions, so

L/K has a HGS of type N

L'/K has a HGS of type N.

We saw an example where  $G' \cong H$  as abstract groups, but  $L \not\cong L'$  as field extensions. Isomorphism need not preserve normality.

# **Question:** Is it possible for L/K to admit HGS but L'/K to not admit any?

**Question:** Is it possible for L/K to admit HGS but L'/K to not admit any?

**Answer:** Suppose  $C := \text{Core}_G(H) \neq \{1\}, H$ . Then L'/K has normal closure  $E^C$ . If there is no N of order n := [L : K] = [L' : K] s.t.  $G/C \cong \text{Gal}(E^C/K)$  is isomorphic to a regular subgroup of Hol(N), then L'/K has no HGS.

#### Strategy

• compute the index n subgroups H of G

- compute the index n subgroups H of G
- understand when they are conjugate / in the same Aut(G)-orbit / abstractly isomorphic

- compute the index n subgroups H of G
- understand when they are conjugate / in the same Aut(G)-orbit / abstractly isomorphic
- when not conjugate to G', compute  $C := \operatorname{Core}_G(H)$

- compute the index n subgroups H of G
- understand when they are conjugate / in the same Aut(G)-orbit / abstractly isomorphic
- when not conjugate to G', compute  $C := \operatorname{Core}_G(H)$
- find when G/C appears in our list

- compute the index n subgroups H of G
- understand when they are conjugate / in the same Aut(G)-orbit / abstractly isomorphic
- when not conjugate to G', compute  $C := \operatorname{Core}_G(H)$
- find when G/C appears in our list

Question: can this work without a full classification beforehand?

All notation as before, n = pq, p, q distinct odd primes with  $q \mid (p - 1)$ .

All notation as before, n = pq, p, q distinct odd primes with  $q \mid (p-1)$ . Let  $N = C_{pq}$  be generated by  $\sigma, \tau$  of orders p and q respectively. Let  $\alpha$  generate the q-Sylow subgroup of  $Aut(\langle \sigma \rangle)$ .

All notation as before, n = pq, p, q distinct odd primes with  $q \mid (p-1)$ . Let  $N = C_{pq}$  be generated by  $\sigma, \tau$  of orders p and q respectively. Let  $\alpha$  generate the q-Sylow subgroup of  $Aut(\langle \sigma \rangle)$ . Then

$$G := \mathbf{N} \rtimes \langle \alpha \rangle$$

is a transitive subgroup of Hol(N).

All notation as before, n = pq, p, q distinct odd primes with  $q \mid (p-1)$ . Let  $N = C_{pq}$  be generated by  $\sigma, \tau$  of orders p and q respectively. Let  $\alpha$  generate the q-Sylow subgroup of  $Aut(\langle \sigma \rangle)$ . Then

$$G := \mathbf{N} \rtimes \langle \alpha \rangle$$

is a transitive subgroup of Hol(N).

Two families of index pq subgroups of G given by:

All notation as before, n = pq, p, q distinct odd primes with  $q \mid (p-1)$ . Let  $N = C_{pq}$  be generated by  $\sigma, \tau$  of orders p and q respectively. Let  $\alpha$  generate the q-Sylow subgroup of  $Aut(\langle \sigma \rangle)$ . Then

$$G := \mathbf{N} \rtimes \langle \alpha \rangle$$

is a transitive subgroup of Hol(N).

Two families of index pq subgroups of G given by:

$$H_1 := \left\langle \left[ \sigma^{a} \tau^{b}, \alpha \right] \right\rangle,$$

All notation as before, n = pq, p, q distinct odd primes with  $q \mid (p-1)$ . Let  $N = C_{pq}$  be generated by  $\sigma, \tau$  of orders p and q respectively. Let  $\alpha$  generate the q-Sylow subgroup of  $Aut(\langle \sigma \rangle)$ . Then

$$G := \mathbf{N} \rtimes \langle \alpha \rangle$$

is a transitive subgroup of Hol(N).

Two families of index pq subgroups of G given by:

$$H_1 := \left\langle \left[ \sigma^a \tau^b, \alpha \right] \right\rangle, \text{ and}$$
$$H_2 := \left\langle \left[ \sigma^a, \alpha^q \right], \tau \right\rangle.$$

All notation as before, n = pq, p, q distinct odd primes with  $q \mid (p-1)$ . Let  $N = C_{pq}$  be generated by  $\sigma, \tau$  of orders p and q respectively. Let  $\alpha$  generate the q-Sylow subgroup of  $Aut(\langle \sigma \rangle)$ . Then

$$G := N \rtimes \langle \alpha \rangle$$

is a transitive subgroup of Hol(N).

Two families of index pq subgroups of G given by:

$$H_1 := \left\langle \left[ \sigma^a \tau^b, \alpha \right] \right\rangle, \text{ and}$$
$$H_2 := \left\langle \left[ \sigma^a, \alpha^q \right], \tau \right\rangle.$$

For any a, b, we have  $Core_G(H_1) = \{1\}$ , and if  $ord(\alpha) > q$ , then  $Core_G(H_2) = \langle \tau \rangle$ .

### $G/\langle \tau \rangle \cong \langle \sigma \rangle \rtimes \langle \alpha \rangle.$

$$G/\langle \tau \rangle \cong \langle \sigma \rangle \rtimes \langle \alpha \rangle.$$

Observation: this is not transitive on any N of size pq.

$$G/\langle \tau \rangle \cong \langle \sigma \rangle \rtimes \langle \alpha \rangle.$$

Observation: this is not transitive on any *N* of size *pq*.

Note:  $\langle \sigma \rangle \rtimes \langle \alpha \rangle$  is transitive on  $C_p$ , but [L' : K] = pq, so L'/K admits no HGS.

• Hol(N) has a unique Hall  $\{p, q\}$ -subgroup, Q.

- Hol(N) has a unique Hall  $\{p, q\}$ -subgroup, Q.
- G transitive on  $N \to \mathsf{so}$  is  $G \cap Q$

- Hol(N) has a unique Hall  $\{p, q\}$ -subgroup, Q.
- G transitive on  $N \to \mathsf{so}$  is  $G \cap Q$
- $\#CI(G) = \#CI(G \cap Q)$

- Hol(N) has a unique Hall  $\{p, q\}$ -subgroup, Q.
- G transitive on  $N \to \mathsf{so}$  is  $G \cap Q$
- $\#CI(G) = \#CI(G \cap Q)$
- $Core_G(H) = Core_{G \cap Q}(H \cap Q)$

- Hol(N) has a unique Hall  $\{p, q\}$ -subgroup, Q.
- G transitive on  $N \to \mathsf{so}$  is  $G \cap Q$
- $\#CI(G) = \#CI(G \cap Q)$
- $\operatorname{Core}_{G}(H) = \operatorname{Core}_{G \cap Q}(H \cap Q)$
- #Aut(G)-orbits =  $#Aut(G \cap Q)$ -orbits

#### Questions

• Do we need to start with a full classification / can we spot general patterns?

- Do we need to start with a full classification / can we spot general patterns?
- How 'spread out' are parallel extensions admitting no HGS?

- Do we need to start with a full classification / can we spot general patterns?
- How 'spread out' are parallel extensions admitting no HGS?
- Does this make sense for skew bracoids?